
Quantum computing has long seemed like one of those technologies that are 20 years away, and always will be. But 2017 could be the year that the field sheds its research-only image.
Google started working on a form of quantum computing that harnesses superconductivity in 2014. It hopes this year, or shortly after, to perform a computation that is beyond even the most powerful ‘classical’ supercomputers—an elusive milestone known as quantum supremacy. Its rival, Microsoft, is betting on an intriguing but unproven concept, topological quantum computing, and hopes to perform a first demonstration of the technology.
The quantum-computing start-up scene is also heating up. Monroe plans to begin hiring in earnest this year. Physicist Robert Schoelkopf at Yale University in New Haven, Connecticut, who co-founded the start-up Quantum Circuits, and former IBM applied physicist Chad Rigetti, who set up Rigetti in Berkeley, California, say they expect to reach crucial technical milestones soon.
Whereas classical computers encode information as bits that can be in one of two states, 0 or 1, the 'qubits' that comprise quantum computers can be in ‘superpositions’ of both at once. This, together with qubits’ ability to share a quantum state called entanglement, should enable the computers to essentially perform many calculations at once. And the number of such calculations should, in principle, double for each additional qubit, leading to an exponential speed-up.
Monroe hopes to reach quantum supremacy soon, but that is not IonQ’s main goal. The start-up aims to build machines that have 32 or even 64 qubits, and the ion-trap technology will enable their designs to be more flexible and scalable than superconducting circuits, he says.
The quantum-computing start-up scene is also heating up. Monroe plans to begin hiring in earnest this year. Physicist Robert Schoelkopf at Yale University in New Haven, Connecticut, who co-founded the start-up Quantum Circuits, and former IBM applied physicist Chad Rigetti, who set up Rigetti in Berkeley, California, say they expect to reach crucial technical milestones soon.
Whereas classical computers encode information as bits that can be in one of two states, 0 or 1, the 'qubits' that comprise quantum computers can be in ‘superpositions’ of both at once. This, together with qubits’ ability to share a quantum state called entanglement, should enable the computers to essentially perform many calculations at once. And the number of such calculations should, in principle, double for each additional qubit, leading to an exponential speed-up.
Monroe hopes to reach quantum supremacy soon, but that is not IonQ’s main goal. The start-up aims to build machines that have 32 or even 64 qubits, and the ion-trap technology will enable their designs to be more flexible and scalable than superconducting circuits, he says.
Source@Scientific American